
1977 1331 

Lattice Summation of Multipole Interaction Energies in Crystals. Cal- 
culation of the Outer-sphere Contribution to the Crystal-field Splitting 
in Nickel(r1) Oxide 
By Antony B. Blake, Department of Chemistry, The University of Hull, Hull HU6 7RX 

The Bertaut method for calculating the lattice energy of an ionic crystal is extended to include multipole-multipole 
interactions. Equations are obtained for the electrostatic-interaction energy of compact multipolar ions or molecules 
of any symmetry in a crystal of arbitrary structure, and their application is illustrated using a-N,, K[HF,], and 
Pb[NO,], as examples. The method is used to estimate the contribution to the ligand-field splitting A in NiO from 
outside the first co-ordination sphere ; the interaction between cation multipoles is toosmall to account for observed 
differences between spectroscopic and thermochemical estimates of A. 

RAPIDLY convergent series for lattice sums of coulombic 
interaction energies in ionic crystals of arbitrary structure 
have been available since the work of Ewald in 1921.l 
The lattice summation of multipole-multipole inter- 
actions was considered shortly afterwards by Kornfeld,2 
who used Ewald's theta-function transformation to 
obtain corresponding formulae for a lattice of point 
dipoles and one of point quadrupoles. More recently, 
Neckel et aL3 used similar methods to derive formulae 
for a crystal composed of cylindrically symmetrical 
particles having multipole moments of any order. 
Other workers have discussed methods of calculating 
related sums for a crystal composed of dipoles. 

The formulae obtained by these workers consist, like 
the Ewald formula, of two infinite sums, one over the 
reciprocal and one over the direct lattice. An important 
advance in the calculation of lattice sums was made in 
1952 by B e r t a ~ t , ~  who showed that the Ewald method 
for ionic crystals is equivalent to replacing the point 
ions by spherical charge clouds of gaussian profile; 
Fourier-transform methods then yield a rapidly conver- 
gent reciprocal-lattice sum for the total energy, but it is 
necessary to subtract a direct-lattice sum to correct for 
the overlap between charge clouds. Bertaut pointed 
out that the necessity for this correction can be elimin- 
ated by using a discontinuous charge-density function, 
the density being zero outside a sphere small enough to 
avoid overlap. This device is now widely used in 
lattice-energy calculations, usually with a linearly or 
parabolically decreasing radial density function.6 It has 
not previously been used in the summation of multipolar 
interactions, although its advantages here are especially 
marked; even with cylindrical charge clouds, the cal- 
culation of the overlap correction is a very difficult 
problem ,3a 

In this paper I apply Bertaut's approach to the sum- 
mation of general multipole-multipole interactions in 
crystals. The formulae obtained are relatively simple, 
and apply to multipoles of any order and any symmetry. 
The method is illustrated by computation of the electro- 
static-interaction energies of solid K[HF2], and 

1 P. P. Ewald, Ann. Physik, 1921,64, 253. 
H .  Kornfeld, 2. Physik, 1924, 22, 27. 

3 A. Neckel, P. Kuzmany, and G. Vinek, 2. Natuyforsch., 1971, 
A26, (a) 561; (b)  569. * B. R. A. Nijboer and F. W. de Wette, Physica, 1967,28, 309; 
1958, 24, 422; F. W. de Wette, Phys. Rev., 1961,128,103; F.  W .  
de Wette and G. E. Schacher, ibid., 1966, A187, 78, 92. 

Pb[NO,], in terms of the multipole moments of the 
particles, and is then used to investigate the ' outer- 
sphere ' contribution to the crystal-field splitting in 
NiO. (By ' outer-sphere' is meant the whole crystal 
outside of a particular cation and its adjacent anions. 
It is assumed that in a fairly ionic crystal it is possible to 
calculate this contribution by classical electrostatics, 
provided reasonable assumptions can be made about the 
charge distribution on the cation.) 

THEORY 

Bertazlt's Method for Ionic Crystals .--In this method an 
array of point charges qj at  locations xj, represented by the 
discontinuous periodic function (l), is convoluted with a 

7(r) = 2 @(r - Zj) (1 )  
j 

radial density function cr(r), centred at the origin, to give 
a. periodic charge density p(r) with maxima a t  xi [equation 
(2) 3. Provided ~ ( r )  is spherically symmetric and the charge 

p ( r )  = cr(r)~(r - u)du (2) 

clouds of adjacent ions do not overlap, the interaction 
energy of the distribution p ( r )  is the same as that of the 
original point charges. The total electrostatic energy T 
is then obtained by convoluting p ( r )  with itseli, dividing 
the resulting ' electrostatic Patterson function ' P(zc) by 
the length of the charge-separation vector u, and integrating 
over vector space within the unit cell: 

T = Q P(u)u-'du (3) I 
I W U )  = P(' + u)p(r)dr where 

From the convolution theorem, the Fourier transform of 
g(r) is given by (4) where <D is the Fourier transform of cr and 
F(h) ,  equation ( 5 ) ,  is that of 7 .  Similarly, the Fourier trans- 

G ( h )  = <D(h)F(h) (4) 

( 5 )  ~ ( h )  = 2 qjexp(2xih.q) 
j 

form of Y(u)  is IG(h)I2. Since P(u)  has the periodicity of 
the lattice, it can be expanded as a Fourier series on the 
reciprocal lattice with I G ( h )  12 as coefficients. Substituting 
this series into (3) and integrating over vector space, one 

5 F. Bertaut, J. Physique, 1952, 18, 499. 
6 D. H. Templeton, J .  Chem. Phys., 1955, $33, 1629; T. C. 

Waddington, Adv. Inorg. Chem. Radiochem., 1959, 1, 157; 
H. D. B. Jenkins, Chem. Phys. Letters, 1971, 9, 473. 
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obtains (6) where V is the unit-cell volume, h is the re- 
ciprocal-lattice vector a,'h, + a2'h2 + u3'h3 (a,' = u2 : 
a3/V, e tc . ,  ai being the unit-cell vectors), and the sum is 
taken over all positive and negative integral values of h,, 
h,, and h,. The h = 0 term is omitted, since it can be 

shown (see below) to be zero if the crystal is electrically 
neutral and unpolarised. 

In the case of point charges, (3) would include an infinite 
contribution from the self-energies of the ions, but when 
the charges are assumed to be extended in space the self- 
energy S becomes finite, and can therefore be calculated 
and subtracted to give the net interaction energy U per 
unit cell : 

U = T - S  (7) 
where s = 2 q j w  (8) 

i 

W = 4 o ( r  + u)a(zs)u-ldrdu ( 9) I 
A General ExPression for t h e  Electrostatic-interaction 

Energy of a Crystal codaining Mzcltipoles.--It is assumed 
that the values of the multipole moments of the particles 
are known (e.g. from physical measurements or molecular- 
orbital calculations). Following Bertaut, the ions or 
molecules are replaced by charge clouds wholly contained 
within non-overlapping spheres, and their density functions 
o ( r )  are convoluted with the lattice function 7(r), which 
now consists simply of a Dirac delta function at  the location 
of each particle of appropriate type in the crystal. Provided 
that each o ( r )  has the same multipole moments as the real 
ion or molecule that i t  represents, the resulting periodic 
cAarge distribution will have essentially the same electro- 
static-interaction energy as the actual crystal.* 

We can now expand each o ( r )  in spherical harmonics 
about the centre of the sphere [equation (lo), where qij 
represents the angular components of r in the co-ordinate 
system of the ith kind of particles in their j th  orientation]. 
I t  is convenient to choose the radial functions such that 
[R(r)]2 decreases linearly to zero a t  some limiting radius. 
Although the series (9) is infinite, only small values of 1 
will be significant in practice, and the presence of symmetry 
will impose further restrictions on 1 and m provided the 
axes to which the Ylm are referred coincide as far as possible 

aij ( r )  = 2 a i ~ m  [ ~ i  (r)  I ylm (.;ij) (10) 

Qlm = o(r)rzPlm(cosO)eim4dr (11) 

Im 

with any symmetry axes of the particle. (A detailed dis- 
cussion of the application of symmetry to spherical har- 
monic expansions is given in ref. 7. )  The multipole 
moments of a continuous charge distribution such as a(r) 
are defined by 8 (11) and hence we can rewrite o ( r )  in the 
form (12) : 

aij ( r )  = 2 QilmEijlm ( r )  (12) 
lm  

where Eijl,(W) = NlIn (rz)~-1[Ri(r)]2Y1-m(.Gij) 
* If the distance between the centres of two molecules is less 

than the largest radial extent of either, their interaction cannot be 
accurately represented by a multipole expansion. It is assumed, 
however, that the particles are sufficiently compact that such an 
expansion is valid to a good approximation, This restriction 
also applies, of course, to  the earlier ~ o r k . ~ - ~  

The normalisation factor is given by (13) and { f ( r ) )  

represents the expectation value [R(r)I2f(v)r2dr. lorn 
To obtain the Fourier transform X ( h )  of [ ( r ) ,  we make 

use of the expansion (14) where j t ( z )  is a spherical Bessel 
function; taking account of the orthonormality of the 

4~c c i 9 ~ ( 2 5 c h r )  Ylm*(i) Yjm(P) (14) e2rih.r = 
lm 

spherical harmonics, one finds expression ( 15) where 
Ii1(h) = ( jz(2xhr)) .  The Fourier transform of p(r) is 
thus given by (16) where gilm(h) = 2 Fij(h)Xijlm(h), the 

Fourier transform of ~ ( r )  being simply (17) in which the sum 
j 

Xijlm( h) = 4 ~ i ~ N ~ ~ , ( r ~ ) i - ~ I i l (  h )  Ydm( hij) (15) 

G ( h )  = z Qitmgilm(h) (16) 
itm 

(17) I;ij(h) = 2 exp(2xih.qk) 
k 

is over identical particles in the same 0rientation.f 
the total energy is as in (1 8) : 

Hence 

T = 2 2 T(i1m; i'l'm')Qilm*Qi*rm* (18) 
ilm i'l'm' 

I show in the Appendix that, provided the crystal is 
electrically neutral and has no dipole moment arising either 
from the distribution of charges or from the arrangement 
of molecular dipoles in the unit cell, the h = 0 term in (19) 
vanishes. 

The self-energy is now as in (20) where ni is the number of 

s = C n i W i  (20) 
i 

particles of the ith shape. 
obtain ( 2 1 ) ,  Fa' being a radial Slater integral.1° 

From equations (9) and (12) we 
The forms 

S = 2 s ( i lm)IQi im12 (21) 
ilm 

of Il(h) and Fz appropriate to a linearly decreasing radial 
function are given in the Appendix. 

The net interaction energy can be written as in (23) and 
(24)-(26) follow: 

t Y ; m  = (- l)mYp*, Xl,.+, = (- l)lXlm*, and Q1,-m = Ql,,,,*. 
J.  L. Rather, 'Atomic Energy Levels in Crystals,' N.B.S. 

Monograph 19. U.S. National Bureau of Standards, Washington, 
1961. 

* H. Morgenau and N. R. Kestner, ' Theory of Intermolecu- 
lar Forces,' Pergainon, Oxford, 1969, p. 281. 

0 M. E. Rose, ' Elementary Theory of Angular Momentum,' 
Wiley, New York, 1957. 

lo E. U. Condon and G. H. Shortley, ' The Theory of Atomic 
Spectra,' Cambridge, 1963. 
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where U(ilm; i'l'm') =I= T(i1m; i'l'm') - S(ilm)6i&43,,~ 

The derivatives are in general complex. 
I t  must be emphasised that in the above formulation the 

radial function R(r) is chosen arbitrarily (subject to the 
no-overlap condition) and does not itself affect the results; 
the properties of the particles enter only via their multipole 
moments. 

An Alternative Method for Non-s$herical Atoms or Mon- 
atomic Ions.-In the method described above, the electro- 
static effect of each molecule or ion is simulated by means 
of a one-centre charge cloud having the same multipole 
moments. For an atom or monatomic ion, however, an 
accurate radial wavefunction may be available, and this 
suggests a slightly different formulation. 

Let us assume that ~ ( r )  can be represented by a normal- 
ised sum of n one-electron (or one-' hole ') contributions 
[equation (27)] in which each orbital function is of the form 
(28). In  order to obtain the Fourier transform * of I $(P)  1 2 ,  

(14) is used as before, and integrated over the angular co- 
ordinates by means of the integral theorem for a triple 
product of spherical harmonics.9 The result is (29) ; I~(1z) 
is defined as above; (lll,mlm,~l,E,lm) is a Wigner 
coefficient, and equation (29) includes only terms for which 
X is even, 0 < A < 21, m' - m = p, and Ipl < A. The 
total energy can then be calculated from equations (4) and 
(6), modified to allow for more than one kind of ion. Some 
examples of @(h) for various wavefunctions are given in 
Table 1. 

The self-energy integral W is equivalent to a two- 
eIectron one-centre Coulomb integral, and for a single wave- 
function $lm we have (30), the coefficients cA being tabu- 

lated.10 The general case is rather more complicated, but 
for real d orbitals the form of W can readily be found from 
Table A26 of ref. 13. 

In order to obtain accurate results with this method one 
must exercise some care in the choice of radial function. 

* The Fourier transform of the total electron-density distri- 
bution in an atom is the well known scattering factor for X-rays, 
which for certain non-spherical electron configurations has been 
considered by McWeeny l1 and Freeman.12 

t If M is an ion or a dipole, a term such as Urn is meaningless in 
isolation because the h = 0 term is infinite. Provided M + X is 
neutral and non-polar, however, the infinities cancel when the 
terms are combined as above. 

The Hartree-Fock (HF) function is the ideal, but because 
of the overlap problem, and the difficulty of working with 
an accurate representation, its use is not practicable. 
Simpler functions can , however, be used to reproduce 
particular properties of the HF function, e.g. a truncated 
Slater-type orbital or a density function of triangular 
profile, both of which provide two adjustable parameters. 
In the case of Ni2+ only the fourth moment of the radial 
density function is relevant, and I use a linear [R(r)12 with 
ro chosen so as to give the correct value of (r4). For 

TABLE 1 
(a) The Fourier transforni @(h) of the electron density for some 

atomic wavefunctions 
vvr) @(h) /(474t 
S YOOIO 
dz*  Yoo.lo - (2.5*/7)Y,OI2 + $Y4OI4 
dzx-va or dq YooIo + (2.53/7)Y2012 + W 1 °  f (70*/2)(y44)+ Y4-4)p4 
eg2, 3A 2g 
bglegl, 3T2g(C) 

2Y0OIO +- CY4O + (5/14)* ( y 4 4  + 4 11 4 
2YooIo + [Y40 - (5/14)* (Y44 + YC4)1I4 

(b)  . The self-energy integrals W for superimposition of two 
atomic electron-density functions ly5*lZ and 1 4 ~ 1 2  

*A #B 2 w  
S Arbitrary FO 
d $A Fo+&F2+ &F4 

eg2J SA2g  eg2J 3A 2g Fo + &F4 

Spherical ions the radial function is arbitrary, and the linear 
form is used here too. 

The Lattice Energy of a Locaked Process.-Besides 
considering the convolution of a given charge-density 
distribution with itself [equation (3) J we can also consider 
the convolution of one structure, P, with another, Q. The 
energy of interaction of P with Q when the two are super- 
imposed is given by (31) where SPQ is given by an obvious 

d 2  dz*-ys or dzy Fo-&FZ+i+F4 
FO - 4 F 2  - 3 4 F 4  dza-** dzv 4 9  4 4 1  

eg2, 3A2g t2g1eg1J 'T2# P + & F 4  

modification of (8j. Such mixed convolutions arise in the 
expression for the electrostatic energy of a unit cell of one 
type (P) substituted into a crystal of another type (Q) hav- 
ing the same unit-cell dimensions. In particular, if a single 
molecule or ion M in one unit cell undergoes a change (of 
shape, orientation, or location) to M', all the other particles 
in the crystal remaining as they were, the lattice energy 
absorbed during this transition is given by (32) where X 
represents all particles other than M.? 

UM+MP = ~[U(M+X)(M+X) - ~(w+x)(a~+x)I 

= ~ ( U M M  + UMX - UM~M - uwx) 
Computation.-The method expressed by equations 

(1 2)-( 26) is embodied in a computer program, MULTMAD- 
A, which is applicable to any crystal structure and to all 
multipoles up to fourth order. The output includes U and 
its first and second derivatives. The method of equations 
(27)-( 3 1) is incorporated in a second program, MULTMAD- 
B, written specifically for the NiO problem. I t  is restricted 
to orthogonal crystal systems, centric structures, and 
multipoles of even order, but it is much faster than MULT- 

(32) 

11 R. McWeeny, Acta Cryst.,  1951, 4, 513. 
12  A. J .  Freeman, A d a  Cryst.,  1959, 12, 261, 274, 929. 
1s J. S. Griffith, ' The Theory of Transition Metal Ions,' Cam- 

bridge, 1961. 

http://dx.doi.org/10.1039/DT9770001331


1334 J.C.S. Dalton 
MAD-A and can handle mixed convolutions. Both 
programs were developed from a Madelung-energy pro- 
gram,14 and are written in Fortran. They are available 
from the author. 

RESULTS 

The Electrostatic-interaction Energies of Crystals containing 
Molecules or CompZex Ions.-a-N,. For a linear centro- 
symmetric molecule the only non-zero multipole moments 
Qtm are those with l even and wz zero. The experimental 
value of the quadrupole moment Q, of N, is (1.4 f. 0.1) x 

1 e.s.u. cm2 (1 e.s.u. = 3.3356 x 10-10C),or0.29eA2.16 
For the cubic structure l6 of crystalline a-N, I calculate 
a2U/i3QZ2 = 58.212 kJ mol-l e-2 A-4, giving a net stabilisation 
of 1.237 k J mol-I from the quadrupole-quadrupole jnter- 
action. 

Again, only even 1 and zero m are possible. 
The Ql(Z < 8) have been calculated by a molecular-orbital 
method by Neckel et u Z . , ~ ~  who also performed the lattice 
summation. I have calculated the contributions to the 
lattice energy of the tetragonal K[HF,] structure due to 
interactions with I + I' < 4, and their values are listed in 
Table 2. 

For the nitrate ion (symmetry D 3 ~ J  the non- 
zero moments Qlm are those with l + m even and m = 0, f 
3, + 6 ,  etc. The second derivatives of the lattice energy 
with respect to all the multipole moments with I < 3 
in the cubic Pb[N03], structure16 are listed in Table 3. 
The multipole moments of [NO,]- do not appear to have 
been calculated, but we can estimate them roughly from a 
fractional-charge model. If r is the bond length and q 
the charge on each 0 atom, we have Qzo = - 1.5qr3 and 
Q3,-c3  = 45 qr " ,8  and taking Y = 1.243 and (I = 0.569 
(from a SCF MO calculation 17) we obtain the values 1.32 

TABLE 2 
Contributions to the electrostatic lattice energy ( I i J  inol-l) 

of K[HF,] 

0 727.354 5 727.336 9 
2 43.566 5 43.562 1 

K[HF,]. 

Pb[NO,],. 

I + I' This work Ref. 3b 

4 - 12.690 3 - 12.691 5 

eA2 and - 49.2 eA3, respectively. The resulting contribu- 
tions to the lattice energy are given in Table 3. 

The Outer-sfihere Contr ih t ion  to the Crystal-field Splitting 
in Ni0.-This compound has the NaCl structure with a = 
4.1684 A.16 The ground state of Ni2', 3A29(tzs6ees2), and 
the first excited state, 3Tg(t2g,6eg3), are separated by an 
energy A, the major part of which is due to the six nearest 
oxide ions. I call this part Ainner, and the contribution 
from the rest of the crystal AOuter. In crystal-field theory 
terms, the splitting A is the result of the different energies 
of interaction of the multipole moments of the 3Azs and 
3T2g states of Ni2+ with the non-spherical charge distri- 
bution surrounding it. I note that Aouter includes multi- 
pole-multipole interactions between cations, and its value 
will therefore depend on whether the other Ni2+ ions (i) 
remain in their ground states or (ii) make a simultaneous 
transition to the excited state. Spectroscopic measure- 

l4 A. B. Blake, program 222, Quantum Chemistry Program 
Exchange, Indiana University, 1973. 

15 A. D. Buckingham, R. L. Disch, and D. A. Dunmur, J .  
Amer. Chem. SOC., 1968, y, 3104. 

1* R. W. G. Wyckoff, Crystal Structures,' 2nd edn., Tnter- 
science, New York, 1965. 

ment of A is made under conditions approximating to case 
(2). The value of A estimated from thermochemical data, 
however, is defined as five sixths of the difference in lattice 
energy between the actual crystal, in which all ions are in 
the 3 A ,  state, and a hypothetical crystal in which all Ni2' 
ions have the spherical electron distribution t294.Beg3.2, the 
interionic distance being unchanged. l* This corresponds to 
case (ii) above, and we may thus expect the outer-sphere 
contribution here, Atouter, to differ from that in the spectro- 
scopic process, AsoLiter, because of the different orientations 
of the cation multipoles. Clearly the difference At - As 
will be equal to At- - Asmm, where Amm represents the con- 
tribution to A from multipole-multipole interactions 
alone ( i .e .  not involving the charges of the cations or anions). 

The crystal-field splittings can be calculated as follows. 

TABLE 3 
Second derivatives of the lattice energy (k J mol-*) with 

respect to the multipole moments," and corresponding 
energy contributions for Pb[N03], 

Type i I m. Type i' I' m' PLT/i3Qtt,c?Qiy,ni Energy/ 
kJ mol-l 

Pb2+ 0 0 Pbs+ 0 O e  1.523 8 x lo3 1523.82 

2 0 1.742 5 x 102 230.01 
3 f3 0.0  0.00 

[NO,1- 0 0 [NO,]- 0 O c  3.6752 x lo3 918.81 
2 0 -3.7254 x 10' 34.59 
3 f 3  -3.1733 x lo-' -7.81 

3 0  2 0 - 1 . 5 2 3 3 ~  10' -6.64 

[NO,]- 0 0 '  3.648 7 x 10' -364.87 

3 f 3  2.788 2 x l O P  -0.09 
3 f .3  3 f 3  -4.7404 x -2.87 

Total 2 300.28 
n ~3 -3.2332 x 10-3 -3.91 

The second derivatives are real. The units of Qlm are 
assumed to be eA. Since the charges of the ions are not in- 
dependently variable (the crystal must be electrically neutral), 
the partial derivatives in these cases have no meaning in isol- 
ation. 

If the ground-state crystal structure is represented as 
A + X, the structure irl which all the cations are in the 
3T2g state as T + X, and the hypothetical crystal with 
spherical NiZf ions as S + X, then for my electrostatic 
model one obtains (33) and (34) where U is the electrostatic 

A, = 2( UAA + UAX - UAT - UTX) 

At = #UAA + ~ U A X  - uss  - 2 u s x )  

part of the lattice energy. These values include an inner- 
sphere contribution, Aill*er (not, of course, the true value of 
this quantity, which cannot be obtained from a purely 
ionic model), which we must subtract so as to obtain the 
outer-sphere contributions; since the anions are spherical 
and therefore behave electrostatically like point charges, 
Ainner can be obtained by a simple point-charge C F  cal- 
culation, i.e. Ainner = 10 Dq. 

It can be seen from Table 1 that the only spherical 
harmonics Yl* and Slater integrals F1 that contribute to 
As and At are those with I = 0 or 4. The corresponding 
multipole moments are proportional to {YO} and <rQ), 
and since ( Y O }  = 1 the only variable parameter is (r4). 

Using an approximate representation l9 of the Hartree- 

l7 T. Yonezawa, H. Kato, and H. Konishi, BuEE. C A e m  SOC. 
Japan, 1967, 40, 1071. 

18 P. George and D. S. McClure, Progr. Inorg. Chem., 1959, 1, 
381. 

l8 J. W. Richardson, W. C. Nieupoort, R. R. Powell, and W. F. 
Edgell, .I.  Chdrn. Ph-vs., 1962, 86, 1057. 

(33) 

(34) 
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Fock radial function for Ni2+, I calculate (r4> = 0.2637 
A4. This value can be reproduced by a linear radial density 
function [R(r)]2 decreasing to zero at  r, = 1.0532 A, and I 
therefore use the latter as the radial function in MULT- 
MAD-B. The results are A, = 31.49 and At = 31.62 kJ 
mol-l. For an octahedron of point charges -2e at  a 
distance R from Ni2+, LODq = 1Oe2 (r4)/3R6, which gives 
Ainner = 31.05 kJ mol-l. Hence Asouter = 0.44 3 t  A Outer = 

0.57, and At - As = +0.13 kJ mol-l. 
The difference At - A, can also be calculated more 

directly, by considering only the multipolar ( E  = 4) com- 
ponents of the cation charge clouds. With all the monopole 
terms removed we have As- = 2 ( U ~ ~ m m  - Ua~"") and 
Atmm = #UAAmm; computation gives UAAmm = -0.156 and 
U p ~ r ~ ~  = -0.026, whence Asmm = -0.26 and Atrnm = 
-0.13 kJ mol-l. 

It is noteworthy that U A A ~ ~  = 6 U A T ~ ~ ,  and hence Asmm = 
2Atmm. This is a general result, which can be shown to 
follow from the angular dependence of the particular 
wavefunctions involved. Thus it is not actually necessary 
to calculate U A T ~ ~  in order to find At - A,. I remark here 
that U*drnrn can also be calculated by means of MULTMAD- 
A, using the relations Q4,, = 8 (r4) and Q 4 , f 4  = 
40(r4), which are valid for the SA, function. 

1335 

DISCUSSION 

In recent years there has been a growth of interest in 
the lattice energies of crystals containing multipolar 
molecules or complex ions.20 Most calculations have 
involved assigning fractidnal charges to the atoms ; 
often the values assigned have been based on electro- 
negativities or similar considerations, but even when they 
are derived from a detailed quantum-mechanical treat- 
ment (via a population analysis) such numbers bear a 
rather artificial relation to the actual molecular charge- 
density distribution. For small symmetrical atomic 
clusters a more accurate representation is given by the 
multipole moments of the charge density, and methods 
are now available for calculating these in a routine 
manner.sbS21 This paper describes a method for 
computing the electrostatic-interaction energy of a 
crystal composed of multipolar particles of any symmetry 
in terms of their multipole moments, and also (in 
principle) for calculating the electrostatic energy of a 
localised process involving a change in the position or 
multipolar properties of one such particle. 

The calculations for or-N,, K[HF,], and lead nitrate 
illustrate the application to straightforward lattice- 
energy problems. The result for a-N2, U = 1.237 kJ 
mol-1, agrees well with the value obtained by Kohin,Z2 
U = -21.47Q2/2RS = 1.238 kJ mol-1, by direct sum- 
mation over 27 unit cells. (For this relatively simple 
structure, direct summation is probably the most 
efficient method of calculation.) The results for K[HF,] 
(Table 2) are in good agreement with those obtained by 
Neckel et a ~ ? . , ~ ~  using an extension of the Ewald method 

2o A. €3. Blake and F. A. Cotton, Inovg. Chem., 1963, 2, 906; 
A. Neckel and G. Vinek, 2. phys. Chem. (Frankfurt), 1966,48, 61; 
H. D. B. Jenkins and T. C .  Waddington, Nature Phys. ScZ., 1971, 
282, 5; C. Dosi, E. Giglio, V. Pavel, and C .  Quagliata, Acta 
Cryst., 1973, A29, 644; T. Kihara, Adv, Chem. Phys., 1976,83, 51; 
H. D. R. Jenkins and T. C. Waddington, Chem. Phys. Letters, 
1975, 81, 369. 

to cylindrical multipoles. For Pb[NO,],, the depen- 
dence of the lattice energy on the quadrupole and octa- 
pole moments of the nitrate ion is readily computed 
(Table 3), but the values of the moments are not yet 
known. However, by assigning fractional charges to 
the atoms I have made plausible estimates, from which 
it appears that the multipoles contribute altogether 
ca. 10% of the total electrostatic binding energy. 

An example of a more sophisticated application is the 
calculation on nickel oxide, in which mixed convolutions 
are used to obtain the outer-sphere contributions to the 
energy of the 3A2g+3T2g transition. It is found: (a) that 
the charges of all the ions beyond the first co-ordination 
sphere contribute 0.92 kJ mol-l to A ;  and ( b )  that, in 
addition, the cation multipoles contribute -0.26 k J 
mol-l to A, and -0.13 to At. 

A difference between At and A, is observed experiment- 
ally, and one of the aims of the present study was to 
investigate the possibility that the inequality arises 
from differences in the outer-sphere contribution to A. 
In NiO, the 3A2g+3Tzg transition has been observed at 
ca. 9 000 cm-l, so that A, is 107 & 2 kJ m01-l.~~ At can 
be defined as five sixths of the energy of transition to the 
hypothetical state in which all the Ni2+ ions adopt the 
spherical configuration, the lattice enthalpy in the latter 
state being estimated by interpolation from data for 
oxides containing spherical ions (CaO, MnO, and ZnO). 
The value obtained in this way is 113 & 2 kJ mol-l, 
although this value should probably be increased slightly 
to take account of the fact that ZnO has the wurtzite 
rather than the NaCl structure.lB Similar data for 
other transition-metal compounds were collected by 
George and McClure,lB who first drew attention to the 
fact that one generally finds At > As. However, the 
results above clearly rule out the possibility that a 
significant part of the difference is due to outer-sphere 
electrostatic interactions. 

In conclusion, it should be pointed out that my esti- 
mate of the multipole-multipole contribution to At - 
A, is only approximate because, being proportional to 

If, 
for example, the Hartree-Fock function appropriate to 
the nickel atom rather than the Ni2+ ion had been used, 
we should have obtained a value of 0.75 kJ mol-l, 
nearly six times that actually found; had the value of 
(@A> used been that which makes lODq equal to the 
observed value of A, the value calculated for At - As 
would have been 1.5 k J mol-l. 

Other AppZications.-The method described here could 
usefully be applied to problems like one recently dis- 
cussed by Owens,% who calculated the C F  splitting of 
the x orbitals of an [N,]- ion in crystalline barium azide, 
using a point-charge representation of the [N,] - 
quadrupole. It seems likely that it would also be useful 

21 R. Dovesi, C. Pisani, F. Ricca, and C. Roetti, J . C . S .  Faraday 
11, 1974, 1381. 

22 B. C. Kohin, J .  Chem. Phys., 1960, 83, 882.  
23 D. S. McClure. J .  Phys. and Chem. Solids, 1957, 3, 311; R. 

Newman and R. Chrenko, BUZZ. Amer. Phys. Soc., 1959, 4, 53. 
Z4 F. J,  Owens, Theor. Chim. Acta, 1975, 40, 87. 

it is very sensitive to the radial function. 
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in the study of other solid-state phenomena, such as the 
energies of formation of Schottky and Frenkel defects, 
the lattice energies of electron-transfer processes, factor- 
group splittings of vibrational spectra, and the magnetic- 
dipole and electric-multipole contributions to spin-spin 
interact ions. 

APPENDIX 

The h = 0 Term in Equation (19).-From the power 
series expansion of the Bessel functi0n,2~ it follows that as 
h + 0, ( j ~ ( Z x h v ) > / ( z )  + [ (4~)~1!/(21 + 1) !]hz, and hence: 

Th(zZm; i‘Z’wz’) --f constant x hz*z‘-2 x 
2 2 exp[zxih.(zi#j.kt - zijjk)1 y l  -m* (b i i~p -m’ (h i t i j )  ( ~ i )  
j k  j’k’ 

Terms with I + I’ > 2 vanish. By expanding the expo- 
nential we find that, in order for the remaining terms to 
vanish as h + 0, the following conditions must be satis- 
fied: 2 Qioo = 0 (otherwise T is infinite); 2 Q a o z i j k  = 0, 

and ~QilocosOhij = 0 for any h (otherwise T is indeter- 

minate) . 

z i j k  

ij 

The Integrals I1 and Fz for a linearly decreasing Radial 
Density Function.-Here a = 2xhr0. 

<.I> = [12/(3 + 4(4 + l )p:  
F2 = [48(13 + 21)/35(3 + Z)(4 + Z ) ] Y ~ - ~  

I ,  = 12(2a - 3 sin a + a cos @)/a4 

P-3) 

(A41 

(A5) 

(A6) 

To = 12(2 - 2 cos a - a sin .)/a* 

I, = 12[-8  + 8 cos a + a sin a + 3aSi(a)]/a4 (A7) 

I ,  = 12[8a + 8 sin a - a cos a - 15Si(a)]/a4 (AS) 
I ,  = 12[- 48 - 4.5 cos a - a sin a 

+ 52.5 (sin a/.) + 7.5Si(a)]/a4 (A9) 
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